- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Doshi-Velez, F (4)
-
Gottesman, O (2)
-
Brunskill, E (1)
-
Brunskill, E. (1)
-
Daulton, S (1)
-
Faisal, A (1)
-
Fu, H (1)
-
Gottesman, O. (1)
-
Killian, T (1)
-
Komorowski, M (1)
-
Konidaris, G (1)
-
Konidaris, GD (1)
-
Liu, Y (1)
-
Liu, Y. (1)
-
Raghu, A (1)
-
Sussex, S. (1)
-
Yao, J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the Hidden-Parameter MDP (HiP-MDP) framework, a family of reinforcement learning tasks is generated by varying hidden parameters specifying the dynamics and reward function for each individual task. The HiP-MDP is a natural model for families of tasks in which meta- and lifelong-reinforcement learning approaches can succeed. Given a learned context encoder that infers the hidden parameters from previous experience, most existing algorithms fall into two categories: model transfer and policy transfer, depending on which function the hidden parameters are used to parameterize. We characterize the robustness of model and policy transfer algorithms with respect to hidden parameter estimation error. We first show that the value function of HiP-MDPs is Lipschitz continuous under certain conditions. We then derive regret bounds for both settings through the lens of Lipschitz continuity. Finally, we empirically corroborate our theoretical analysis by varying the hyper-parameters governing the Lipschitz constants of two continuous control problems; the resulting performance is consistent with our theoretical results.more » « less
-
Gottesman, O.; Liu, Y.; Sussex, S.; Brunskill, E.; Doshi-Velez, F (, International Conference on Machine Learning)
-
Liu, Y; Gottesman, O; Raghu, A; Komorowski, M; Faisal, A; Doshi-Velez, F; Brunskill, E (, Advances in neural information processing systems)
-
Killian, T; Daulton, S; Konidaris, G; Doshi-Velez, F (, Advances in neural information processing systems)
An official website of the United States government

Full Text Available